HISTORIC BUILDINGS

THAT I HAVE NEVER VISITED AND WISH I HAD WITH SOME EXAMPLES OF AIR CONDITIONING

BRIAN ROBERTS
<2>

USAF CHAPEL COLORADO SPRINGS 1962
Since 1973, members of the Heritage Group have researched, visited and recorded details of the history and engineering services of many types of building, not only in the UK, but in Europe, Asia and the USA. The Group now includes representatives in Australia, France, Italy, the Netherlands and the USA. As a result, we have written and printed a small number of booklets with photographs, drawings and information on buildings of interest, with notes on their engineering services: systems, equipment, manufacturers and so on.

Although the writer has visited many of these countries, and looked at a variety of building services engineering, there are hundreds that I have never managed to see. Therefore, now long retired, this booklet is completely different. As the title states it looks at "Buildings that I have never visited and wish I had."

CONTENTS: FEATURED BUILDINGS

COVER: St. Basil: *front*, Flatiron: *inside front*, American Radiator: *inside back*, Sherry Netherland: *back*,

Cathedral of Vasily the Blessed in Red Square.
The Cathedral has nine domes, each for a different church.
The Cathedral was built by order of Ivan the Terrible.
SAINT BASILS CATHEDRAL MOSCOW 1561

A State Historical Museum since 1928, now has occasional church services.
The "spectacular" iron dome was designed and built 1855-63.

The dome and the "huge extensions" were by Architect Thomas U. Walter and Army Engineer (later General) Montgomery C. Meigs.
A public tour in progress, viewing the huge paintings in the Rotunda under the Dome.

The Statutory Hall commemorates famous Americans including Dr John Gorrie (1802-55), of Florida who patented a refrigeration Ice Machine (USP No. 8080: May 6, 1851), and is said to have devised an air conditioning (?) system in 1833 for treating fever stricken sailors in hospital by blowing air over buckets of imported natural ice.
Heating and Ventilating System of 1881.
Large centrifugal fan rotor of 1857, 14 ft diameter (no casing), cast-iron central cone, wooden vanes, fastened with metal angles and straps, designed by Robert Briggs.

Steam heating coil 1858, straight wrought-iron pipe, assembled with return bends. Large pot-type steam trap (at lower left).
Arrangements for heating, ventilating and lighting by Montgomery Meigs from 1853. Initially described as "perfect, successful and admirable" but within ten years or so there was a call to return to opening windows and natural light.
The Dome of the US Capitol topped with the Statue of Freedom.
SAGRADA FAMILIA BARCELONA 1882

Unfinished Roman Catholic Minor Basilica. Antoni Gaudi architect 1883 until his death 1926. Capacity 9000 persons, Length 300 ft, Width 200 ft, Height 560 ft (planned, making it world's tallest church). Consecrated in 2010. Designed to have 18 spires, each symbolising a figure in the New Testament, but only 10 spires built to date.
Gaudi’s architectural and engineering style combines Gothic and Art Nouveau forms.
SAGRADA FAMILIA BARCELONA 1882

Biblical stories told in stone and light.
Detail and carvings on the Nativity Facade, Charity portal.
Photo of 1904 from the Library of Congress.
All fourteen storeys were mechanically ventilated (200,000 cu.ft/min).
A detailed description is available in Arnold, pp.14-18.
Air conditioning designed by Alfred Wolff and refrigeration by Henry Torrance Jr. Four high-pressure steam boilers fed three steam engine-driven DC generators of 750 kW. Exhaust steam, supplemented by live steam, provided winter heating using a mix of direct and indirect radiation. Summer cooling came from three 150 TR (450 TR total) steam-powered absorption brine chillers utilising a brine storage tank. Board Room 40,000 cu.ft/min plenum supply, 300 TR.
NEW YORK STOCK EXCHANGE 1903

Ducts over Ceiling of Sub-Basement No. 2.
NEW YORK STOCK EXCHANGE 1903

See also a description of the design and systems in Donaldson & Nagengast, pp.274-6.
Modern computerised visualisation of the exterior of the building which no longer exists being demolished in 1950. The architect was Frank Lloyd Wright.

Modern computerised visualisation of the interior of the building. Claimed to be one of the first buildings to be air conditioned it has been reported that refrigeration was not installed until 1909, this carried out by Kroeschell Brothers of Chicago, but even this date is in dispute.
One of the four "Air Purifying and Cooling Devices."

Layout of the plant and air distribution ductwork in the basement.
WOOLWORTH BUILDING NEW YORK 1913

Elaborate lobby ceiling mosaics and staircase with caricatured sculptures of Cass Gilbert, Architect (top) and Frank Woolworth, Owner (bottom).
Provided with 29 Otis Electric Elevators. Six Tower elevators maximum capacity 3000 lbs, speed 700 ft/min at 2500 lbs. A seventh elevator runs from 53rd floor to Observation Station. Technical details of elevators and controls are in "Master Builders," pp.45-50.
Mechanical ventilation uses 19 direct-drive centrifugal fans by C&C Electric Manufacturing Co.

Specialist lower-level rooms served by Kinealy Air Washers. Kauffman Heating and Engineering Co.
489 ft, 40 floors, with only Basement, Banking Hall and 10 floors of Bank Offices above Hall air conditioned. Floors above these offices, having natural ventilation, were to be leased. The Bank’s air conditioning units and CO2 refrigeration were manufactured by the American Carbonic Machinery Company. Units included spray washer chamber & direct-expansion coil.
UNION TRUST BUILDING DETROIT 1929

The Main Bank with elaborate decor on ceiling and walls.
Now renamed Guardian Building.
Cross-section of air conditioned floors and typical ceiling duct layout. Air volume delivery all plants 193,000 cu.ft/min. Refrigeration 600 TR.
Frank Lloyd Wright's "top lit hypostyle" hall, with mushroom structural columns. Fresh air was introduced to the air conditioning from “nostril-type” roof inlets. Carrier were consulted but the contract went to York. Wright also introduced underfloor heating, possibly the first in the USA.
Wright witnessing a successful load test on one of his unusual mushroom structural columns. These were 21 ft high; the circular pad was 20 ft in diameter, the column tapering downwards to 9 inches in diameter, the pads interconnected at their tangent point to form a rigid frame.
I recently, for the first time, came across these illustrations of a proposed design for the Opera House to be sited in Sydney Harbour. It secured 3rd Prize in the Competition of 1956, but only the winning design was ever built and that took twenty years. My interest is that, although I had no involvement with the Opera House, the architects for the above design were Paul Boissevain & Barbara Osmond and in the second half of the 1960s, for three years, I worked for them in their Epsom Office.
The buildings distinctive "sails" or "shells" (as they have been termed), proposed by the prize-winning architect, proved to be structurally impossible, until redesigned, at considerable time and cost, by Ove Arup & Partners.
The completed Opera House.
Air conditioning and mechanical services were designed by Steensen Varming and installed by Haden Engineering. A large clear plastic model was produced which included the air conditioning ductwork. The final installation is said to have required 20 miles of ducting and 8 miles of piping, together weighing more than 1000 tons. (See articles by Paul Yunnie).
The water source heat pumps (1500 TR) using harbour water (6000 gals/min) as a heat source and heat sink served 27 plant rooms having over 100 individual fan systems. This arrangement avoided having a boiler chimney stack or cooling tower which would have upset the roof design.
The famous view.
587 ft, 44 floors. Architect (Norman) Foster & Partners. Built on the site of the demolished 1935 HKSB building, which was the first in Hong Kong to be air conditioned (installation by Haden).
The multi-storey atrium with groups of floors interconnected by escalators.
Design of the combined air conditioning-bathroom prefabricated plant room. Services consultant J. Roger Preston & Partners.

The refrigeration-heat pump installation by Drake & Scull (6 machines, 2 for heating) using sea water condensing via titanium plate heat exchangers.
REFERENCES AND FURTHER READING

United States Air Force Academy Chapel, Colorado Springs.

1987 Frank Lloyd Wright's Larkin Building, Jack Quinan, The University of Chicago Press.
1993 Expiatory Church of the Sagrada Familia, Mark Burry, Phaidon, London.
1994 Heat & Cold: Mastering the Great Indoors, Barry Donaldson & Bernard Nagengast, ASHRAE, Atlanta, GA.
2000 The Comfort Makers, Brian Roberts, ASHRAE, Atlanta, GA.
2006 Haden Australia; A History of An Engineering Enterprise, Paul G. Yunnie, Haden Engineering Pty, Australia.
2006 Model Landmark Unveiled Again (Sydney Opera House), Paul G. Yunnie, Climate Control News, Australia, August.
2006 HVAC Modelling Before CAD (Sydney Opera House), Paul G. Yunnie, ASHRAE Journal, October.
2016 NY Skyscrapers, Dirk Stichweh (from the German), Prestel Publishing, New York.
2017 The Sagrada Familia, Gijs Van Hensbergen (from the Spanish), Bloomsbury, London.
2021 20th Century Air Conditioning, David Arnold, ASHRAE.

Other information from the Heritage Group Archive and website.